Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
With innovations in the field of gaze and eye tracking, a new concentration of research in the area of gaze-tracked systems and user interfaces has formed in the field of Extended Reality (XR). Eye trackers are being used to explore novel forms of spatial human–computer interaction, to understand human attention and behavior, and to test expectations and human responses. In this article, we review gaze interaction and eye tracking research related to XR that has been published since 1985, which includes a total of 215 publications. We outline efforts to apply eye gaze for direct interaction with virtual content and design of attentive interfaces that adapt the presented content based on eye gaze behavior and discuss how eye gaze has been utilized to improve collaboration in XR. We outline trends and novel directions and discuss representative high-impact papers in detail.more » « less
-
Many augmented reality (AR) applications require observers to shift their gaze between AR and real-world content. To date, commercial optical see-through (OST) AR displays have presented content at either a single focal distance, or at a small number of fixed focal distances. Meanwhile, real-world stimuli can occur at a variety of focal distances. Therefore, when shifting gaze between AR and real-world content, in order to view new content in sharp focus, observers must often change their eye’s accommodative state. When performed repetitively, this can negatively affect task performance and eye fatigue. However, these effects may be under reported, because past research has not yet considered the potential additional effect of distracting real world backgrounds.An experimental method that analyzes background effects is presented, using a text-based visual search task that requires integrating information presented in both AR and the real world. An experiment is reported, which examined the effect of a distracting background versus a blank background, at focal switching distances of 0, 1.33, 2.0, and 3.33 meters. Qualitatively, a majority of the participants reported that the distracting background made the task more difficult and fatiguing. Quantitatively, increasing the focal switching distance resulted in reduced task performance and increased eye fatigue. However, changing the background, between blank and distracting, did not result in significant measured differences. Suggestions are given for further efforts to examine background effects.more » « less
An official website of the United States government
